Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Diagnostics (Basel) ; 11(11)2021 Nov 04.
Article in English | MEDLINE | ID: covidwho-1533838

ABSTRACT

Lung ultrasound (LUS) is an accurate thoracic imaging technique distinguished by its handheld size, low-cost, and lack of radiation. User dependence and poor access to training have limited the impact and dissemination of LUS outside of acute care hospital environments. Automated interpretation of LUS using deep learning can overcome these barriers by increasing accuracy while allowing point-of-care use by non-experts. In this multicenter study, we seek to automate the clinically vital distinction between A line (normal parenchyma) and B line (abnormal parenchyma) on LUS by training a customized neural network using 272,891 labelled LUS images. After external validation on 23,393 frames, pragmatic clinical application at the clip level was performed on 1162 videos. The trained classifier demonstrated an area under the receiver operating curve (AUC) of 0.96 (±0.02) through 10-fold cross-validation on local frames and an AUC of 0.93 on the external validation dataset. Clip-level inference yielded sensitivities and specificities of 90% and 92% (local) and 83% and 82% (external), respectively, for detecting the B line pattern. This study demonstrates accurate deep-learning-enabled LUS interpretation between normal and abnormal lung parenchyma on ultrasound frames while rendering diagnostically important sensitivity and specificity at the video clip level.

2.
AIP Adv ; 10(11): 115023, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-968132

ABSTRACT

The covid-19 infection rates for a large number of infections collected from a large number of different sites are well defined with a negligible scatter. The simplest invertible iterated map, exponential growth and decay, emerges from country-wide histograms whenever Tchebychev's inequality is satisfied to within several decimal places. This is one point. Another is that failed covid-19 pandemic model predictions have been reported repeatedly by the news media. Model predictions fail because the observed infection rates are beyond modeling: any model that uses fixed rates or uses memory or averages of past rates cannot reproduce the data on active infections. When those possibilities are ruled out, then little is left. Under lockdown and social distancing, the rates unfold daily in small but unforeseeable steps, they are algorithmically complex. We can, however, use two days in the daily data, today and any single day in the past (generally yesterday), to make a useful forecast of future infections. No model provides results better than this simple forecast. We analyze the actual doubling times for covid-19 data and compare them with our predicted doubling times. Flattening and peaking are precisely defined. We identify and study the separate effects of social distancing vs recoveries in the daily infection rates. Social distancing can only cause flattening but recoveries are required in order for the active infections to peak and decay. Three models and their predictions are analyzed. Pandemic data for Austria, Germany, Italy, the USA, the UK, Finland, China, Taiwan, and Sweden are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL